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Abstract. We present a ~enerating-function-based method to analyse the dynamics of 
synchronous neural networks. It is applied to a very general model of networks of 
automata, which includes a certain number of neural network models of the Little type as 
particular cases. The method enables us to analyse the evolution of the order parameters 
as well as their fluctuations. These fluctuations are shown to consist of two independent 
parts, one due to the stochastic nature of the evolution, the other to the random nature of 
the stored patterns. 

1. Introduction 

In this article. we present a generating-function-based method to analyse the stochas- 
tic evolution of synchronous neural networks, such as the Little model [l, 21, in the 
case of low loading and at non-zero ‘temperature. The dynamic of the order para- 
meters has already been solved even for asymmetrical connections for this particular 
case [3]. Here we extend these results to a very general network model, where we 
tried to impose the minimum set of hypotheses compatible with the method. This 
model includes the case of the simple asymmetrical Little model already solved, but 
also various generalizations, such as the nonlinear Little model, or the extension of 
-1, +1 states to Potts states for the neurons ([4] and [5 ] ,  for example, describe such 
models of neural networks and give results for the asynchronous case or for the one- 
step dynamic at saturation). Moreover, we derive not only the evolution of the global 
order parameters, but also their fluctuations up to first order in the system size 
expansion. Such a fluctuation analysis has been performed, for an asynchronous 
equivalent of the asymmetrical Little model by Shiino [6]. But to our knowledge, this 
has not been done for synchronous networks. By our method we are able to study the 
relative role of the two sources of fluctuations, the stochastic nature of the evolution, 
and the random nature of the stored patterns. We are also able to clarify the relative 
importance of the various assumptions of the model for the validity of the final results. 

2. Description of the general model 

The model we will use is a very general network model of parallel synchronous 
stochastic automata. We consider a network of N automata, indexed ,by i ,  each one 
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with a state U;. The set of possible values of the state is not important, as long as there 
exist a measure on it, which will provide a mean to define a probability. To each 
automaton we also associate an element &, belonging to a finite set. It can be thought 
of as a kind of local memory for the automaton, and corresponds in the special case of 
the Little model to the stored patterns. We will consider the case where for each i, 6; is 
chosen randomly, independently of the others, with an identical probability for each 
automaton denoted by k(c). All the automata evolve in parallel, synchronously: at 
each time step t ,  each one updates its state independently of the others. The 
probability governing this update is supposed to be defined by a positive bounded 
function T, function of the value of 5 for this automaton and of a certain number of 
global parameters of the network denoted by m,, (p being a discrete index, with r 
possible values) and given by 

r N  

where the MP are r functions of the state of an automaton and of its 'memory', which 
are supposed to be bounded, so that the parameters are bounded when N grows. 
These parameters correspond to the mean value for all neurons of these functions. T 
must be derivable in terms of the global parameters. This gives the following 
probability of finding the automaton indexed by i in the state U:+' at time t +  1: 

Here {m;},, denotes all the parameters mi with t fixed and for all values of p .  The 
measure defined on the set of the values of U is supposed to be well behaved, so that 
aU integrals involving measurable bounded functions are convergent. (For example, 
the classical integration over a compact interval of R verifies this.) Moreover, the 
integral defining the denominator is supposed to be non-zero for every values of the 
parameters 5 and of the mb. We analyse in this article the case of N growing to infinity 
with rand  the number of possible values of 5 fixed. We will use p ,  p'. or q, q., K to 
index the r global parameters, while t ,  f', z, r', U wiU be used to index a particular 
time. The evolution will be studied between time 0 and a maximum time T. 

To illustrate the applicability of this model, we describe how the asymmetrical 
Little model can be considered a special case of it. It corresponds to the choice 
{-I, +1} as the set of possible values of the state of the automaton (in this case called 
neuron). The & belongs then to {-I, +1y and for each p between 1 and p ,  E$' 
corresponds to the value of the neuron i in the pth stored pattern. In this particular 
case, the index p is identified with p. The global parameters are the correlations 
between the states of the network as a whole and the stored patterns: 

r N  

The function governing the stochastic evolution of the network is given by 

P J 
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This corresponds to a Little model with temperature parameter B and with the 
connections and thresholds given by 

', 
PY fi  

where the 
symmetrical [3]. ~ ~ 

3 . ~  inaiysis of the evolution 

To analyse the stochastic evolution of,this general type of network, we introduce the 
following generating function, which gives by derivation all the moments of the 
repartition of the parameters m;, for all values of p and t (t between 0 and T ) :  

are the p-stored patterns, and where A is not constrained to be 

where F is the initial probability of the state of the network, that we suppose to 
depend only on them: and N .  m; are the global parameters defined as functions of the 
~ by (2.1). They are also, as (2.2) shows, the important parameters of the network 
(they are sufficient to give the probability of each state of the network at the next time 
step when the tj  are given). We can insert in this equation a delta function for each 
relation corresponding to (2.1), at each timet, and as a consequence introduce them; 
as independent integration variables. Using the integral representation of the delta 
function and after some rearrangements we easily obtain: 

1 - c In[ 1 daT(u, E';, {m;}+,) 

+ In[ / daT(u, &, {m;-'}J exp -i 2 rfzpp(a, 6,) 

daexp -i E #z:Mp(a, ti) 
i,#T P 

;,to 

(3.2) 
Let us define the following function of mi and 6~; for all values of p and f between 0 
and T .  dependent on a discrete parameter E :  

Introducing this function into (3.2) and performing the change of variables #z;+ 
*.,.., ,,. . ;-!,;. I:,. .u.. 
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-ik& we have for the generating function (from now on, the contour of integration 
for the variables k; is implicitly taken to be -im++im): 

exp F ( N , { ~ ~ ) + N ~  fibmb+C H ( E ~ , { ~ ; } ~ ~ . { & J  } . (3.4) I PI i 

The contribution of H to the integral is in the form of a sum of values of H, considered 
as a function of mi and mi, for each &. As E takes only a finite number of values, the 
possible values of H span a finite-dimensional space. Therefore, using the fact that for 
each i, .& is a random independent variable, we can use the central limit theorem to 
approximate this sum, up to the first order in fi: 

where Z is a random function belonging to the same finite-dimensional space as H, 
obeying a Gaussian probability with zero mean and covariance given by: 

and ()4e*o denotes the mean value relative to the density of probability k. Z describes, 
in fact, the fluctuations up to the first order of 1 I f i  due to the random nature of as 
opposed to the 'thermal' fluctuations due to the stochastic nature of the evolution 
(2.2) that we will evaluate later. It must be observed that the two are different in 
nature, and that if the former can be calculated independently of the latter, the 
inverse is not a priori true. 

(Z({fi&, {mb}pt )Z({fi;}fl, {nbIeP)) = 0% @;b, {mb&)H(E, {fiblfl, { n b > p O ) k ( ~  

Finally we have 

At this stage we can use a saddle-point method to further approximate the generating 
function, but a slightly unusual method, as the saddle point itself depends on N. When 
N tends to infinity, the argument of the second exponential diverges (the first 
exponential remains fixed). It diverges exponentially, and the maximum value along 
the path of integration diverges compared with the other values, even if its value and 
position depends on N. For this to be true, even for the term due to F, we choose from 
now on F t o  be of the form NC({m!}p), with a normalization constant added, so that F 
denotes a density of probability. Another factor is that T must remain fixed with N .  
Consequently, the results are valid if we observe the evolution for a time very small 
compared with N (in fact Tmust be small compared with CN) .  Now we can deform 
the original contour of integration such that it passes through the saddle point of this 
argument and corresponds to the path of steepest descent near it. This contour is also 
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chosen so that the absolute maximum of the argument along it is reached only at this 
point. The saddle point depends on N ,  but as N tends to infinity (whilep and T remain 
fixed) only the vicinity of this saddle point contributes to the integral along the path of 
steepest descent (which depends also on N ) .  Let us denote by *mL, *&; this saddle 
point, and by n;, it; the deviation from it of the parameters of integration along the 
contour. 

The saddle-point equations are derived in appendix 1. One important result is that 
the role of G is to constrain the values of the parameters for t=O.  If it 'is correctlyl 
chosen, for example if it is a linear function, it can force the values of *m:. The second 
result is that, except at time 0, all the parameters *&; equal 0. And finally, we obtain 
an equation giving *mF1 as a function of *mi. Consequently, if G is correctly chosen, 
we have only one saddle point. The evolution of the parameters is given by, up to first 
order in I/* 

*my'= ( duMP(o, ,. E)'% t, Pm:},,) )h(o+~yp({*mL}p)  0.7) 

doT(o, I*m%) 

where Yp is a random function, due to the repartition of the ti, obeying a Gaussian 
probability with zero mean and correlations (the first mean value is here relative to the 
probability of repartition of all the &): 

wp({%},,)yp,({m;}?)) 

do.MP(07 iWo,  E ,  {m,lv) doMP'(o, EYW, E ,  h;}?) 

j d o ~ ,  E ,  {m,},,) 

. (3.8) 

1 d 4 o ,  5,  {";I,,) I =f I 
We can approximate the generating function, using the Taylor expansion of the 

argument of the second exponential in (3.6) and dropping irrelevant terms (terms not 
of order N in the exponential, whose contribution is negligible for the determination 
of the fluctuations up t o  the first order in 1/*) by: 
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where CJ is dependent on *m;, but not on 1;. Its value can also be obtained through 
the observation that for 1; null, the generating function must be equal to 1. C, is the 
contour of steepest descent near the saddle point, translated so that this point 
corresponds to 0. As only the vicinity of the saddle point contributes to the generating 
function when N tends to infinity, this contour can be chosen so that it corresponds to 
the path of steepest descent of the Gaussian function in the above equation (obviously 
tangent to the real steepest descent path at 0). In fact it is equivalent to choose any 
linear contour for which 0 is an absolute maximum, implying that the function 
decreases exponentially away from 0. By derivation of the generating function it is 
easy to obtain the interpretation of *m; at the saddle point: it is in fact the 'thermal' 
average, or average relative to the stochastic nature of the evolution, of the 
parameters of the network defined by (2  1 Equation (3.7) describes the evolution of 

mean value of the parameters for the probability given by G. These are not simply 
expressed in terms of G because G is a function of the m;, and the number of states of 
the network with given parameters depends highly on these parameters (most of the 
states have parameters near 0). 

By derivation of the generating function and using the remark above concerning 
the value of a. we obtain the correlations of the 'thermal' flucutations Smk and S h b  of 
the order parameters of the network, mb and m;, near their thermal averages and up 
to the first order of UV%. The result is for the correlation between the fluctations am; 
(the other correlations have exactly the same form): 

these averages, up to the order 1 in 1/ 2. N The values of the *m! are then simply the 

(3.10) 

where D is the same Gaussian integral but without the term n; .n . outside the 
exponential (D is a simple noirmalization factor). In this expression the Gaussian 
function in the two integrals is defined by a real quadratic form in the exponenfial (the 
C, is complex, of course). Introducing the linear change of variable which brings the 
contour C, on the real axis and calculating the Gaussian integral, it is easy to show 
that these correlations can be collectively expressed as the inverse of twice' the 
opposite of the matrix defining the above quadratic form (which is, as the remark 
above implies, a real symmetrical matrix). This inverse is studied in appendix 2. The 
elements of this inverse can be obtained recursively, starting from f = 0 up to t =  T. 
The fluctuations for f =  0 are constrained by G. In turn, the second differential of G at 
the saddle point must obey a limiting relation, otherwise the correlations of the 
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fluctuations obtained at time 0 correspond to a negative symmetrical matrix, which is 
absurd. The case of G linear mentioned above does not violate this condition. If we 
concentrate on the 'thermal' correlations between the different Sm; for the same time, 
we have the following relation (see appendix 2): .. , i 

(Smt.+'SmFi) = KPp8(~m:} , )  + 2 .Lm({xm:}x) (sm;Sm:.)L,,,(~m:}~,) 
7,' ' , 

where Kppp and Lo,. are functions 'of the *mL and are defined by 

(3.11) 

doMP(o, 5)Mp'(o, E)W,  E ,  {m,M 

do W, 5, {m,},,) 

1 d o M P ( 6  t)T(o, E ,  Im,}?) duMP'(u, 5)W, t, {mJJ 
(3.12~~) 

. 

2 
I 

.. ( 1  
KP,,({~m,X) = 

- 

i 

); (3.126) 
l d o M P ( o ,  E M U ,  5,h,},)  1 do-(c ::,, 5, hJ,) 

[ 1 do T ( 6  5, im,h)] 
- 

2 

The equations (3.7), (3.8), (3.11) and (3.12) characterize the evolution of the 
macroscopic parameters of the network and their fluctuations. We can present these 
results in another way. If we denote by m; the average of the parameters relative to 
the stochastic evolution and the repartition of the 5, at the same time, and dropping 
the terms not of the first order in l/<N, we can pose: 

where the evolution of m; is &en by 

(3.13) 

(3.14) 

and where Sm; are the 'thermal' fluctuations, obeying (3.11) with in place of *mi 
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(in fact, as long as the difference is of order U*, the result is the same up to the 
same order for the fluctuations). Am; are then what we can call the 'quenched' 
fluctuations, due to the repartition of the ti. From (3.7) it is easy to show that these 
fluctuations obey the following evolution: 

Am:' = Yp({fii},,) + Lppt({m!,}n)AmLe. 
P' 

(3.15) 

We find Lpps again in this equation because it is the first derivative of the iteration 
defined by (3.14). This evolution is the equivalent of the equation (3.11) for the 
'quenched' fluctuations. It consists of a term at time t characteristic of the averages fi; 
to which is added the transport of the previous fluctuations due to the derivative of the 
evolution of these averages. The difference is that the first term is independent of the 
previous fluctuations for the 'thermal' case, which is not true for the 'quenched' case, 
so that the exact equivalent of (3.11) in this case would include the correlations of this 
first term with the previous fluctuations. This final result shows also that in fact the two 
fluctuations, 'thermal' and 'quenched' are independent. All these results are correct as 
long as the fluctutations remain small. If this is true initially, then this is true at time T 
provided Tis small compared with C N .  

4. Applications of the general model 

These results can be applied to various cases of synchronous neural networks. For 
example, for the asymmetrical Little model (see equations (2.3), (2.4) and (2.5)) we 
obtain the following evolution of the order parameters, which are the averages of the 
correlations with the stored patterns defined by (2.3): 

The mean value is relative to the probability of all the values of 8 belonging to 
{-1, +1}'. This is the result obtained in [3]. For the fluctuations due to the stored 
patterns we have 
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and where Y, are random functions with Gaussian law and correlations given by 

(Y,({mP~},~ )Y,(In,~l,, )) 

(4.5) 

These results can be extended to the nonlinear Little model where the connection 
matrix is given by 

1 
J i j= ,Q(Ei ,  E j )  (4.6) 

where the ti are the vectors belonging to {-,1, +l)p, the same as those for the normal 
Little model, and Q is a function of two vectors of this kind. We suppose that the 
thresholds are null. The global parameters of the evolution~are indexed by this type of 
vector and are defined by 

The order parameters are then the averages of these parameters (relative to the 
stochastic evolution and the random nature of the stored pattems) and we have for 
their evolution: 

(4.8) m"l- - k ( E ) t a d D [ E  Q ( E , E W k ] .  
5' 

For the 'quenched' fluctuations we have 

A m ~ ' = Y S ( { n 3 ~ . } e ) + ~ C  L~5'({ f i i . }F ' )Am& (4-9) 
5' 

with the following correlations for the random functions with Gaussian law Y E :  

(Y&m&)Y&&)) 

and for L,. 
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For the 'thermal' fluctuations we have 

Another possible generalization of the Little model is to have, instead of spin-like 
neurons with two value, Potts spins for the states 0;. In this case, there are q states that 
we will denote by yk corresponding to q vectors of W' with scalar product 

yk. yks = - 1. (4.13) 

The set of these vectors will be denoted by Q. The connections are then determined 
byp  stored patterns belonging to Q by 

.. 
PV 

and the transition function by 

the parameters of the evolution are then 

(4.14) 

(4.15) 

with xyuand belonging to 8. We have consequently the following evolution for their 
averages. 

with k the probability on Rp, E an element of C2" with components 5;. We do not pose 
the equations for the fluctuations as they are very cumbersome. But these can be 
obtained easily from the general formulas (3.11), (3.12), (3.14), (3.15) and (3.8). 

5. Conclusions 

The main resuIts of this article are the equations (3.14), (3.11), (3.12), (3.15) and 
(3.8). They describe the evolution of the order parameters and their fluctuations. The 
important point is that there are two kinds of fluctuations, independent of each other: 
fluctutations due to the stochastic nature of the evolution, and the 'quenched' 
fluctuations, due to the random nature of the choice of the E ,  which correspond in 
most neural networks models to the stored patterns. A certain number of essential 
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ingredients are needed for these results to be valid. At the present stage, it is 
restricted to synchronous models. To extend the method to asynchronous neural 
networks seems to be~possible but would require the use of path integrals. The 
hypothesis of identical probability for each ti is not, in fact, necessary for the central 
limit theorem. It can be proven given a certain number of conditions on the moments 
of the probabilities of each [7]. Even the hypothesis of independence of the 
probabilities for each i is not an absolute necessity. Concepts of conditioning can be 
used to extend the validity of the results to dependent cases (see [7]). Nonetheless, a 
fundamental restriction is that the set of possible values of 5, is finite when N tends to 
infinity, which precludes the study of the~case of the number of stored patterns 
growing with N ,  the number of neurons. In conclusion, the method we use to solve the 
general model of synchronous neural networks presented in section 2 seems to be 
extendable to many other cases as well. Its main limitation is that it does not seem to 
be applicable to the study of the saturation of neural networks. 

Appendix 1 

Let us pose the following definitions: 

(Al.1) 

H is then defined as: 

H = c + z  b t + z a ,  (A1.2) 

where a, depend on the mb only, b, on the mb and the rh:' only, and c on the m:. As Z 
belong to the same space as €I, it has the same structure, and we have 

I#T r#T 

Z = c r + c  b : + z  a; 
I#T I#T 

(A1.3) 

with the same dependencies. The saddle point equations are then (divided by N ) :  by 
derivation for m!, for all possible values of p 

by derivation for m i  

mp-O *"I- (A1.5) 
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and for m;(tc]O, T [  n N) 

by derivation for 

and for +,, t#O 

1 ab:-, 

(A1.7) 

(A1.8) 

One important relation is that a,equals b, if *k6+'is null. This relation is therefore also 
true of a: and b;,. From (A1.6) we see that that in that case *m; is also null, provided 
that f belongs to IO, T [  n N. Then from (A1.5) we conclude that, for tdifferent from 0, 
*mb is null. (A1.4) and (A1.7) together give the relations obeyed by the parameters at 
time 0. Ifg is linear, for example, (A1.4) gives directly the value of *i+$, which in turn 
gives the value of *m; through (A1.7). The final result, the evolution equation for the 
parameters, is then given by (A1.8). This is in fact identical to (3.7) where Y is nothing 
but the derivative of b, relative to *mb for mi null. (3.8) is then given by the 
correlations of b' obtained from the correlations of Z, in turn given by the central limit 
theorem in terms of the correlations of H. 

Appendix 2 

To calculate the inverse of the matrix, let us pose the following partial matrices (the 
index p is implicit in these definitions): 

We also have the following relation at the saddle point, due to the structure of H: 

(A2.2) 

These matrices correspond, in fact, to elements of the opposite of the matrix to 
inverse. The other elements of this matrix are null. Let us use the following notation 
for the wanted correlations, collectively expressed as a matrix of the same type as the 
one defining the quadratic form in (3.10): 
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A,. for the term corresponding to m'm" 
E,. for the term corresponding to h'm" 
C,. for the term corresponding to m'm" 
D,. for the term corresponding to &W'. 

We know that, this matrix defining the correlations ofthe :thermal' fluctuations must 
be symmetrical which implies , ,  : 

An, = ?A,., D,. ='Do,., . E,. = 'C,,,. (M.3) 

If we multiply this matrix to the right of the matrix to inverse we must obtain the 
identity. As the two matrices are symmetrical, this implies automatically the same 
result for the product to the left. If we find a matrix obeying this relation, this is then 
the wanted inverse, and the solution is certainly unique. This relation translates in a 
number of relatious for the partial matrices defined above. 

From these relations, it can be shown that the inverse can indeed be calculated, 
under certain conditions for G. If these conditions are not versed, the inverse does 
not exist. In fact, if a more general condition is not verified the fluctuations at time 0 
are not defined (they are not of the first order in l/m). To illustrate how these 
results are obtained, we derive now the equation (3.11) and the condition for the 
existence of the inverse from the relations for the partial matrices (the complete 
derivation of the inverse goes along the same lines but is quite cumbersome, so we will 
not describe it). First, we have for D: 

DtT=0 vt and TH,+ ,' + D,. = 0 Vt#O, T 

which immediately gives 

vt>o D,. = 0. W . 4 )  
For B we have 

En,= -&I ~ Vf' 

TH,+,B,+,,.+B,.=-~,.I ~ ~ vt#o 
and then by recursion and using the relation between B and C in (A2.3) we have: 

Vt' > t  B,.,=O and E,= -I all this for t # 0 
Vt '>  T C,(.=O and c,= -I allthisfortfo. 

Using this we have the following equations for A: 

(A2.5) 

A,- r,+ H,A,-, t = O  vt 
A,. + HtA,-l = 0 Vt' < T (A2.6) 

and therefore 

VtZO, T Ai+it+i = rt+i -Ht+lAt+ 1 t 

= rt+ I- H~+I~A~,+I 
then we have under the same condition 

Ac+~t + Ht+~Ati= 0 

+ X + i t =  -AJHt+i 
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and finally we obtain: 

L + I  =L+i + Hr+lA,THt+i W # O ,  T. (A2.7) 

Equation (A2.7) is in fact exactly the equation (3.11). It isimportant to note that ifA, 
is a symmetrical positive matrix, then this is also true of At+lt+l ,  as this is true for r,. 
This is necesary for A, to make sense as a correlation matrix for the fluctuations. Now 
if we analyse the case of t=O (initial fluctuations) we have: 

THIA1o+GAw+Bm=-I 

THIDlo+ GCwS Dw=O 

A,+ ToBM= 0 

C, + To Dm= -1 
Alo + HIAm = 0. (A2.8) 

Using this we have 

= -roB, 
e,= -ram - I 

Ala= -HIAM 

3'HlH1ToBw-GToBao+Bw= -I 

~ A ~ = - ( T ; ; + ~ H ~ H , H , - G ) - ~ .  (-42.8) 
The existence of A,, which implies that the right term is inversible, is the necessary 
condition for the total matrix to have an inverse. For this inverse to make sense, it is 
also necessary to impose A ,  symmetrical positive (this will impose the same con- 
ditions for other times due to (A2.7)) which gives the necessary condition for C. If it is 
not verified, then the obtained correlations of the fluctuations at time 0 are negative, 
which is absurd. In fact, in this case, they are not of order U g N .  In the case of g 
linear, G is null and the condition is verified. 
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